

Abstract —In robotics, problems of image recognition and

robot localization can be solved with the help of the Scale

Invariant Feature Transform (SIFT) algorithm. This

algorithm can extract scale and rotation invariant features

from a 2D image, but it is computationally intensive. In this

paper, we discuss our attempts to increase the speed of the

SIFT algorithm by parallelizing it in a very-high-speed

integrated circuit hardware description language (VHSIC-

HDL, or VHDL) module included in a LabVIEW project to be

programmed onto a field-programmable gate array (FPGA)

of an NI Robot. This parallelization would allow for fast image

recognition on a robot through the use of reprogrammable

hardware. Our results have revealed that a full-hardware

implementation of the SIFT algorithm on this robot platform

is less effective than a slower, software implementation, and

that this platform is not well suited for image manipulation

techniques.

I. INTRODUCTION

HE SIFT algorithm, developed by David Lowe, is a

good algorithm to use for feature recognition because it

is both scale and rotation invariant. Objects that appear in

one image can be recognized as the same objects in a

second image, even if they are closer to or farther away

from the camera and placed at a different angle. The key

quality of SIFT features that enable this kind of recognition

is that each feature contains descriptors of the surrounding

environment, captured in the scale and orientation of the

feature [1].

 The SIFT algorithm has already been put to use in

previous robot-related projects. Se, Lowe, and Little used

SIFT features as landmarks to create a 3D model of

surrounding objects in a room and navigate a robot to avoid

obstacles [2]. Valgren and Lilienthal were able to extend

the use of SIFT to an outdoor environment for long-term

localization [3]. Lowe himself has suggested the use of

SIFT features for image recognition, which would allow a

robot to seek out or avoid specific objects [4].

 Unfortunately, the SIFT algorithm itself is slow in that it

requires many computations, including multiple Gaussian

filters and gradient calculations. Most previous

implementations of the SIFT algorithm have been on

stationary computers for use in image processing. For

example, Robert Hess implemented the SIFT algorithm in

C code using the OpenCV library [5], which would only be

practical to run on a larger commercial processor like those

found in laptops and desktop computers, not a smaller

microprocessor like those often found in small mobile

devices. The previously mentioned robot projects were

implementing the SIFT algorithm on mobile robots with

embedded computers (for example, running at 2Hz on a

Pentium III 700MHz processor). This kind of system is

relatively expensive and computationally intensive

compared to robots running on small microcontrollers or

FPGAs.

 However, the algorithm lends itself well to

parallelization. As an example, the Gaussian filters are

applied to each pixel in an image, and these independent

calculations can be performed in parallel to lessen the total

processing time of the algorithm. Several small processing

elements, or a Single-Instruction-Multiple-Data (SIMD)

processor architecture could theoretically compute the

filtered values of different pixels in parallel, and then later

calculate quantified characteristics of different SIFT

features in parallel.

 In this paper, we focus on parallelization and other speed

benefits through specialized low-level hardware. Our

ultimate goal was to implement the SIFT algorithm with

VHDL, which can be downloaded to an FPGA. The

benefits of programming the hardware of an FPGA is that

the properties for different pixels or features can be

computed in parallel physically as signals on different

wires, and specialized hardware setups can be configured to

quickly compute common mathematical operations in the

SIFT algorithm that would otherwise require several

instructions on a generalized processor to compute.

 In order to transfer a dominantly software-implemented

algorithm like SIFT into a low-level hardware

implementation, we needed to break down the algorithm

into a series of operations that could be performed in

hardware. We first wrote our own software implementation

of the SIFT algorithm at a basic level (e.g. no functions,

just instructions that have an easily translated equivalent in

hardware). From there, we reorganized the code into a state

machine format to emulate a sequential hardware

implementation and facilitate translation into VHDL. Then,

Hardware Parallelization of the Scale Invariant Feature Transform

Algorithm

Jasper Schneider, Skyler Schneider

T

Fig. 1. Example of a case where SIFT feature recognition would be
beneficial. An object of interest (stapler, left) is present in the right

picture but smaller and rotated.

we actually performed the translation into a VHDL module.

 The remainder of the paper is organized as follows. In

Section II we discuss the robot we used and the

programmable interface for configuring the robot. In

Section III, we discuss the SIFT algorithm and our

approach to parallelizing the algorithm. In Section IV we

discuss the results of the project. This includes the

preliminary results of the intermediate low-level software

SIFT implementation, as well as the results when

downloading the VHDL hardware implementation onto the

robot, including problems that arose and our solutions to

those problems. Section V summarizes our results and

draws from them conclusions about the project. It also

offers suggestions for future work with regards to the

algorithm and robot.

II. ROBOT

 The robot used in this project is the NI sbRIO-9631

included in the NI LabVIEW Robotics Starter Kit for

Education. This robot is pictured in Figure 2. It includes an

ultrasonic sensor, two single-direction wheel motors (for

the left and right wheels of the robot), four LEDs, and a

Xilinx Spartan-3 FPGA, which is programmable through an

Ethernet connection to a computer running LabVIEW

Robotics software.

 After creating our VHDL implementation of the SIFT

algorithm, we program it onto the NI robot’s FPGA

through the LabVIEW software. This software allows the

insertion of VHDL modules to control the hardware design

on the FPGA by use of “HDL Nodes” in a block-level

design of the system. Our VHDL module can therefore

compute whether or not each wheel of the robot should spin

depending on where an object of interest is in an image fed

to the robot.

 The original goal of the project was to have the robot

identify and move toward an object of interest, initially

chosen to be a tennis ball. A series of training images

would be supplied to the robot in order for it to learn the

SIFT features that characterize the ball and then have the

robot acquire test images via a connected camera and

decide whether to move left, right, or forward in order to

approach the ball after detecting it. However, conversations

with NI technical support convinced us that it would not be

possible to attach a camera in this manner. Similarly, it

would not be possible to connect a wireless router to the

robot’s Ethernet port and have image data from a camera

streamed wirelessly to the robot. This approach in

infeasible because the robot only uses its Ethernet

connection to communicate with the computer running

LabVIEW for the sake of downloading designs and

exchanging debug information.

 With no better option for acquiring real-time image data,

we decided to directly program image data into a hardware

ROM when downloading our design onto the robot and

have the VHDL access this ROM instead of actual camera

input. Both the training images and test images must be

downloaded in this manner, and so our project became a

proof-of-concept experiment for the application of a

hardware-implemented SIFT algorithm to be extended by

further research with a setup that allows real-time image

analysis.

 Since we do not have a camera, and the images we

provide may not be of the actual environment the robot is

in, the response of our robot has been modified. We do not

want our robot to crash into things, so we have instead

disallowed the robot to move forward. It can rotate left or

right in circles, but instead of moving forward it merely

signals with an LED that it theoretically would like to move

forward if the image being shown to it were an actual input

image from a camera. That is, from the test images, the

robot either turns left if the target object is on the left of the

image, turns right if the target object is on the right of the

image, lights an LED if the target object is near the center

of the image, and does nothing if the target object is not

detected.

III. OUR APPROACH

A. Preliminary Low-Level Software

 The SIFT algorithm is used to identify features in an

image, regardless of scale and orientation. We began with a

128x128 grayscale image.

 There are four main stages to identifying SIFT features.

In order, they are scale-space extrema detection, keypoint

localization, orientation assignment, and keypoint

descriptors [6].

 First, we discuss our scale-space extrema detection.

Scale-space is a continuous function of scale, the only

possible kernel of which is a Gaussian function. Therefore,

we construct a Gauss pyramid (shown in Figure 3) by first

creating five 2D symmetric Gaussian filters with increasing

standard deviations σ1 through σ5. There are six versions of

the original 128x128 image, called the six intervals, where

each interval is the result of applying one of the Gaussian

filters to the previous interval. Collectively, the six intervals

Fig. 2. The NI robot used in our project, including FPGA board, wheels,

LEDs, and ultrasound sensor.

form an octave. The first image of the second octave is the

64x64 image that results from downsampling the fourth

image of the previous octave by a factor of 2. This process

of applying Gaussian filters and downsampling is repeated

to create a Gauss pyramid consisting of four octaves with

six intervals each.

 Next, we subtract each interval’s image from the

previous interval’s image to obtain a series of Difference of

Gauss images. There are 5 such images in each octave, and

along with x and y spatial dimensions, the interval of the

Difference of Gauss octave serves as a third dimension.

Therefore, each octave in the Difference of Gauss pyramid

can be thought of as a 3D image. For each octave, we

compute the 3D local intensity extrema, where an

extremum is defined as being a pixel with either greatest or

least intensity among its eight neighbors in a 3x3x3 cube in

the three dimensions of x, y, and interval. Each extremum

is a feature candidate.

 In the keypoint localization step, we narrow down the

number of feature candidates. We apply upper and lower

bounds on the contrasts of the extrema and perform

gradient calculations to eliminate features that are too

“edge-like” because they are vulnerable to noise effects,

which differ depending on the scale of the image. After

these candidates are eliminated, we are able to determine

which of the candidates are actually SIFT features of

interest.

 During the orientation assignment step, the SIFT features

are decorated with information about their surrounding

environment. This information consists of a scale, which

can be informally defined as the size of the feature (which

is relative to the size of the object of interest and therefore

is resistant to scale transformations), and an orientation,

which can be informally defined as a 2D direction of the

feature that will remain the same after rotation. The scale of

a feature is determined from that feature’s octave and

interval. The orientation of a feature is computed by

examining the 2D spatial neighborhood of the feature

within its interval and performing histogram analysis.

Collectively, the location, scale, and 2D orientation define

the feature.

 The final stage of the SIFT algorithm, keypoint

descriptors, is the decoration of features with extra

information that makes the feature invariant to additional

parameters beyond scale and rotation, such as illumination

and 3D point of view. Our algorithm does not perform this

fourth stage, as our intent to provide the robot with multiple

training images compensates for this information and can

therefore save computational effort on a per-image basis

(although this is not so much an optimization for our image

ROM-based system as it is for an actual real-time image-

acquiring system).

 The SIFT algorithm described above was first

implemented as a preliminary MATLAB script. We kept

the code at a low level so that we could easily translate it to

hardware.

B. Reorganized State-Machine Implementation

 In preparation for a VHDL hardware implementation of

the SIFT algorithm, we reorganized our preliminary

MATLAB code into a second MATLAB script organized

into a large state-machine. In hardware, all synchronous

(clock-driven) sequential logic can be thought of as a state

machine. Registers hold their values and update only on

clock ticks. The value that the registers are updated to may

be a different function of other signals dependent on the

current state of the state machine. By default, registers hold

their own value from state to state, since there are only a

select few times when each signal needs to change. States

transitions also occur upon clock ticks.

 To model this behavior in MATLAB, we can consider a

register represented by variable R to have a next value

Fig. 3. Gauss Pyramid, in which each row is an octave consisting of six interval images. New intervals are computed by applying Gauss filters, and new

octaves are computed by downsampling the fourth interval of the previous octave.

represented by variable R_next. When in a state S, R_next

is a function of S and all other register variables, but it

defaults to R unless a change is required. After all _next

variables have been calculated, a clock tick can be modeled

by all registers R (including S) being updated to their

respective newly calculated R_next values. The algorithm

begins at a beginning state at which image data is received,

and the cycle of state transitions is repeated until an end

state is reached, at which point the SIFT features have been

calculated.

 The importance of this intermediate MATLAB script is

then the division of computation into states. We partition to

each state a computation that can be completed based on

the available results of previous state computations, but not

too much computation that the resulting hardware design

would not be able to meet timing constraints. In a standard

processor, no more than one arithmetic operation can be

completed per clock cycle, but since we have designed this

hardware specifically for our SIFT algorithm

implementation, we have grouped in some states several

commonly-used arithmetic operations that the SIFT

algorithm would benefit from being able to compute

quickly.

C. VHDL Hardware Implementation

 The final step to creating a hardware description that

could be downloaded to the NI robot’s FPGA was

translating from the state machine software simulation to an

actual hardware module. This translation was greatly

facilitated by the fact that we had broken the tasks down

into ones that had intuitive hardware equivalents.

 Additions in software were implemented as adders in

hardware using the (+) VHDL operator. Subtractions are

likewise simple to implement in hardware using subtracters

(really, adders with negated input) via the (–) VHDL

operator. Multiplications and divisions were similarly

implemented as dedicated arithmetic blocks, although there

is no equivalent operator in VHDL (prior to the new EDA

VHDL-2008 standards, which were not supported by the

LabVIEW HDL node environment). There are bit check

equivalents for comparisons such as equality. Absolute

values for contrast analysis in Difference-of-Gauss images

were implemented by multiplexing the positive and

negative values of the variable, conditional on the top bit

(because negative numbers start with a 1, and non-negative

numbers start with a 0). All fractional numbers required for

Gauss filtering, gradient analysis, and, in general, precision

for pixel representation, were implemented as 16-bit fixed

point numbers with an 8-bit integer component and an 8-bit

fractional component. Similar to the setup of the

intermediate MATLAB script, registers are updated

simultaneously during state transitions at each clock tick.

For each register R, a temporary value R_next is calculated

in combinational logic depending on the current state, and

R is updated to R_next at the next clock tick. By default,

R_next is R, unless the state machine is in some state that is

specifically calculating or otherwise modifying register R.

IV. RESULTS

A. MATLAB Implementation Results

 We have run our SIFT algorithm on a variety of images.

We first tested with computer-generated images, two

examples of which can be seen at the left of Figure 4.

Feature locations are identified by blue circles, and the

scale and orientation of each feature is identified by the red

arrows (length shows scale, and direction shows

orientation). We test the accuracy of our SIFT algorithm,

we also downloaded a C implementation of the SIFT

algorithm by Rob Hess [7] to verify our results. This

implementation uses the OpenCV library. It is therefore

more complicated than ours, in that it uses many function

calls, imports many libraries and headers from OpenCV,

and uses a large variety of different data structures. These

characteristics make this C implementation impossible to

translate directly into VHDL. We ran this C

implementation using the same images that we used with

our MATLAB implementation for comparison. The output

of the C program can be seen at the right of Figure 4.

 There is some difference in certain features from our

results. Minor differences can be attributed to round-off in

boundary cases or differences in implementations of certain

components of the program (like how the Gaussian filter

handles edge-of-image behavior). Overall, many of our

features are the same. The largest differences can be

attributed to simplifying approximations of certain

functions such as tangents, exponentials, and square roots

that are required to calculate the orientation of SIFT

features. Because there is no simple hardware equivalent to

these functions, we implemented them as polynomial

approximations, which can be calculated as a series of

multiplications and additions. Even though the match

between features between our algorithm and Rob Hess’s

algorithm is not perfect, we still label our MATLAB code

as “working” because it calculated a set of SIFT-like

features that can be used to identify an object in a test

image.

 We also compared our MATLAB SIFT implementation

(functionally equivalent to the VHDL hardware

implementation) to Rob Hess’s code for images taken from

an actual camera, which we had intended to use as test

images for locating a tennis ball. Two examples are shown

in Figure 5. Our program tends to ignore smaller features

resulting from noise more often than the C code does.

B. VHDL implementation Results

 After creating a fully synthesizable VHDL hardware

description for the SIFT algorithm, we encountered several

problems when trying to route it to a Spartan-3 FPGA,

which we were required to fix by further modifying the

VHDL.

 An overall summary of our problems and solutions are

shown in Table 1. This table also summarizes the tradeoff

of each design decision.

 Firstly, the FPGA size was limited to 17280 logic

elements and 432kbit of RAM. With this amount of RAM,

we were unable to fit images of size 128x128 pixels

directly on the board (which would require 262kbit per

image, and there are at least six 128x128 images for the

first octave). We solved this problem by reworking our

module to handle 32x32 images for the first octave, 16x16

for the second octave, and so on down to the fourth octave.

This reduction cut our total RAM usage by a factor of 16,

which allowed all images in the Gauss pyramid to barely fit

in RAM. However, only one image can fit in RAM at a

time, so only one image can be analyzed at a time. If this

image is a test image, then its features need to be recorded

after the SIFT algorithm completes, and then the image

must be flushed from memory. If it is a test image, then it

must be the only test image being processed at a time,

which prevents the analysis of several 32x32 images

simultaneously to simulate a larger image. A second reason

why dividing a larger image into 32x32 sub-blocks for

serial analysis will not work is because the SIFT algorithm

could only find features assuming the 32x32 image is the

entire picture, which eliminates the possibility for features

derived from larger objects in the image that span multiple

32x32 sub-blocks. Essentially, this situation is the

equivalent of having a camera that only captures 32x32

pixel images. Unfortunately, the number of SIFT features

that can be extracted from such an image size is often less

than five, and so there is a great loss of precision compared

to a 128x128 image.

 Secondly, we encountered area and timing errors caused

by combinational logic in our state machine. The greatest

problems arose from our dividers. In hardware, division is a

very complicated operation that generally lasts several

clock cycles in a fast processor. In the SIFT algorithm,

division is required when calculating gradients during the

keypoint localization and orientation assignment stages.

When trying to fit the design to a Spartan-3 FPGA using

Xilinx ISE, the divider modules we used were too large and

were unable to complete in the specified clock cycle.

Because those divisions are required by the algorithm, the

only option was to use different dividers. We switched to

using the EDA VHDL-2008 support library’s fixed point

package, which included a fixed point divider.

 This change introduced a third problem. When trying to

switch from ISE tools, which could predict synthesis and

fitting results for the Spartan-3, to the LabVIEW software,

which is required to actually program the FPGA on the NI

robot, there were compatibility issues with the transition.

Mainly, it is difficult in the LabVIEW software to use

multi-file VHDL designs or external libraries. Although

there is an option for VHDL modules with external

dependencies, there are limitations when the external

dependency is non-standard (e.g. not in the ieee library).

Because the fixed point package was only added to the ieee

library in 2008, the LabVIEW software did not support it

by default. When trying to link to the external files

containing the fixed point code, the software was unable to

recognize the division routines. There was no solution for

this problem to get the fixed point package dividers

working. The only alternative would be to redesign the

dividers to be pipelined and take multiple clock cycles, and

that would introduce a larger RAM use in a system that is

already memory-constrained.

 Finally, there was the issue of the LabVIEW compiler

not treating combinational logic the same way as the Xilinx

ISE compiler. In hardware, combinational logic is expected

to compute continuously. However, because of the

interactions between the Spartan-3 FPGA and the rest of

the sbRIO-9631 system on the NI robot, inputs to the

FPGA are only toggled every so often at the frequency of

the rest of the NI robot, and the outputs are only read

periodically in the same manner. This changes the nature of

Fig. 4. SIFT features recognized by our MATLAB code (left) and Rob
Hess’s C/OpenCV code (right) for computer-created images.

Fig. 5. SIFT features recognized by our MATLAB code (left) and Rob
Hess’s C/OpenCV code (right) for actual photographs.

combinational logic into something that is more sequential.

The documentation with regard to this matter has stated that

the best use for inserted HDL is for small modules that do

not use internal registers, and that the behavior should

differ depending on whether the HDL node is located

schematically within a single-cycle loop in the larger design

of the robot system. A hardware implementation of the

SIFT algorithm clearly requires internal registers and

multiple stages to implement a state machine. The solution

to this issue is to redesign the VHDL to conform to the

input and output requirements of the inserted HDL

component, including specifically selecting to allow single-

cycle timed loops (which is not the default option) and then

controlling internal registers with the LabVIEW-generated

enable_in signal and controlling the enable_out signal to

lag the enable_in signal until the computations in the state

machine are complete.

V. CONCLUSION

 Our results have revealed that trying to implement a full-

hardware SIFT algorithm on the NI robot introduces several

problems caused by the system’s memory, area, and timing

limits. The board has only enough RAM to analyze one

input image at a time, and this image must be sized at

approximately 32x32 pixels, which drastically limits the

resolution and number of extractable SIFT features. It is

especially difficult to implement fixed-point division on the

FPGA of the NI robot, and inputs and outputs of the FPGA

must be carefully regulated to meet the timing of the

external system. Our results lead us to conclude that a full-

hardware implementation of SIFT is not well-suited for the

NI robot platform.

 Previous implementations of the SIFT algorithm have

used powerful serial processors to compute and match

features on large images with dimensions of a few hundred

pixels. If the algorithm should be parallelized, the

parallelization should be at a coarser level than a complete

VHDL implementation of the algorithm. Below we provide

our suggestions for future research in this field, which

includes several alternatives that would be better-suited for

SIFT parallelization, and suggestions for better use of the

NI robot platform.

 Multiprocessors: The SIFT algorithm has already been

implemented in software on powerful serial processors. The

algorithm could be parallelized by having several

processing elements simply divide up the instructions that

could be considered independent of one another.

Programming for parallel implementation with pthreads,

OpenMP, or OpenMPI could divide the Gauss filters and

per-feature analysis equally amongst processors while

keeping the level of abstraction the same as in previous

implementations of SIFT. There would be a cost overhead

from using several large processing elements.

 Parallelized processors: These include Very Large

Instruction Word (VLIW) processors, DSP processors, and

GPUs. Each of these options is an SIMD architecture

designed to perform the same operation on multiple pieces

of data simultaneously. They are especially optimized for

performing digital filters such as the ones required to build

the Difference-of-Gauss pyramid in the scale-space extrema

detection portion of the SIFT algorithm. Each processing

element of any of these architectures is generally cheaper

than a single processing element in a standard

multiprocessor, but there is less support for compilers for

these architectures.

 Microcontrollers: A microcontroller is also capable of

executing compiled C code, and like larger processors, it

has the benefit of built-in memory. Accessing memory will

not be as quick as on a full-hardware FPGA because of the

serial nature of access, but several microcontrollers

working in parallel could speed up the process. It would be

relatively easy to hook up a camera to a multi-

microcontroller system compared to the NI robot.

 FPGA with system-level programming: It would still be

possible to take advantage of the FPGA’s full-hardware

parallelization even with certain sequential segments of the

SIFT algorithm. A memory controller would allow access

to an FPGA board’s on-chip SDRAM so that images need

not be stored in full hardware in the SRAM. An FPGA that

has been programmed at a system level would bypass the

issues of having to write relatively low-level modules like

dividers. Se, Ng, Jasiobedzki, and Moyung [8] have used an

FPGA programmed with System Generator to successfully

speed up some of the vision processing functions in the

SIFT algorithm for use on a planetary rover. The speedup

was approximately 10x compared to a Pentium III 700MHz

processor implementation, but the implementation was not

full-hardware and still required a separate processor for

TABLE I

ISSUES AND SOLUTIONS RELATING TO VHDL IMPLEMENTATION

Issue Solution Tradeoff

128x128 image uses

too much RAM
Use 32x32 images

Resolution, number
of extractable

features

Custom divider

module requires too

much area/time

Use EDA VHDL-

2008 fixed point

library

VHDL module

depends on external

package for division

External package

not recognized by
LabVIEW

Proposed: multi-

stage (pipelined)
divider module

RAM overheads,

must redesign a new
divider module

LabVIEW HDL
node executes

combinational logic

sequentially

Place within

single-cycle loop

Must meet LabVIEW

input/output protocol
constraints

General lack of

available memory
for image-intensive

design

Proposed: coarser

parallelization,
system-level

hardware design

Limits benefits of
parallelization

most computation aside from the vision functions. It is

actually possible to program a small embedded processor

onto an FPGA (for example, a Leon3 or Nios II processor)

that could be modified to run the main program of the robot

while exporting parallelizable operations such as the Gauss

filters to the rest of the FPGA for fast hardware

implementation. These processors are already configured to

have memory handlers and dividers, so they are preferable

to a full-hardware implementation.

 Suggestions for future uses of the NI robot are as

follows. The platform is most suited for use of the mounted

ultrasound sensor. Based on the difficulties we had

planning to attach an external camera to the robot, we

conclude that it is not well-suited for algorithms that

require image-based processing. Based on the difficulties

interfacing between the on-board FPGA, the SDRAM, and

the rest of the sbRIO-9631, we conclude that the FPGA

should be limited to speeding up small operations that

could execute within one or two clock cycles and could

benefit from hardware parallelization. Using the FPGA for

larger hardware designs with many internal registers is not

recommended. Trying to access SDRAM and other external

memory from within the NI robot’s FPGA is also not

recommended. The primary programming method for the

NI robot should be through LabVIEW software, and not

through VHDL hardware modules.

REFERENCES

[1] D. G. Lowe, “Distinctive Image Features from Scale-Invariant

Keypoints,” International Journal of Computer Vision, vol. 60, no. 2,

pp. 91–110, November 2004.
[2] S. Se, D. Lowe, and J. Little, “Vision-based Mobile Robot

Localization And Mapping using Scale-Invariant Features,” The
International Journal of Robotics Research, vol. 21, no. 8, pp. 735–

758, August 2002.

[3] C. Valgren and A. Lilienthal, “SIFT, SURF and Seasons: Long-term
Outdoor Localization Using Local Features,” in Proc. European

Conference on Mobile Robots (ECMR), Freiburg, 2007, pp. 253–258.

[4] D. G. Lowe.
[5] R. Hess, “SIFT Feature Detector,” unpublished. Retrieved February

15, 2010 from http://web.engr.oregonstate.edu/~hess/.

[6] D. G. Lowe.
[7] R. Hess.

[8] S. Se, H.-K. Ng, P. Jasiobedzki, and T.-J. Moyung, “Vision Based

Modeling and Localization for Planetary Exploration Rovers,” in
55th International Astronautical Congress, Vancouver, 2004, pp. 1–

11.

