
 

 

 

Abstract —In robotics, problems of image recognition and 

robot localization can be solved with the help of the Scale 

Invariant Feature Transform (SIFT) algorithm. This 

algorithm can extract scale and rotation invariant features 

from a 2D image, but it is computationally intensive. In this 

paper, we discuss our attempts to increase the speed of the 

SIFT algorithm by parallelizing it in a very-high-speed 

integrated circuit hardware description language (VHSIC-

HDL, or VHDL) module included in a LabVIEW project to be 

programmed onto a field-programmable gate array (FPGA) 

of an NI Robot. This parallelization would allow for fast image 

recognition on a robot through the use of reprogrammable 

hardware. Our results have revealed that a full-hardware 

implementation of the SIFT algorithm on this robot platform 

is less effective than a slower, software implementation, and 

that this platform is not well suited for image manipulation 

techniques. 

I. INTRODUCTION 

HE SIFT algorithm, developed by David Lowe, is a 

good algorithm to use for feature recognition because it 

is both scale and rotation invariant. Objects that appear in 

one image can be recognized as the same objects in a 

second image, even if they are closer to or farther away 

from the camera and placed at a different angle. The key 

quality of SIFT features that enable this kind of recognition 

is that each feature contains descriptors of the surrounding 

environment, captured in the scale and orientation of the 

feature [1]. 

 The SIFT algorithm has already been put to use in 

previous robot-related projects. Se, Lowe, and Little used 

SIFT features as landmarks to create a 3D model of 

surrounding objects in a room and navigate a robot to avoid 

obstacles [2]. Valgren and Lilienthal were able to extend 

the use of SIFT to an outdoor environment for long-term 

localization [3]. Lowe himself has suggested the use of 

SIFT features for image recognition, which would allow a 

robot to seek out or avoid specific objects [4]. 

 Unfortunately, the SIFT algorithm itself is slow in that it 

requires many computations, including multiple Gaussian 

filters and gradient calculations. Most previous 

implementations of the SIFT algorithm have been on 

stationary computers for use in image processing. For 

example, Robert Hess implemented the SIFT algorithm in 

C code using the OpenCV library [5], which would only be 

practical to run on a larger commercial processor like those 

found in laptops and desktop computers, not a smaller 

microprocessor like those often found in small mobile 

devices. The previously mentioned robot projects were 

implementing the SIFT algorithm on mobile robots with 

embedded computers (for example, running at 2Hz on a 

Pentium III 700MHz processor). This kind of system is 

relatively expensive and computationally intensive 

compared to robots running on small microcontrollers or 

FPGAs. 

 However, the algorithm lends itself well to 

parallelization. As an example, the Gaussian filters are 

applied to each pixel in an image, and these independent 

calculations can be performed in parallel to lessen the total 

processing time of the algorithm. Several small processing 

elements, or a Single-Instruction-Multiple-Data (SIMD) 

processor architecture could theoretically compute the 

filtered values of different pixels in parallel, and then later 

calculate quantified characteristics of different SIFT 

features in parallel. 

 In this paper, we focus on parallelization and other speed 

benefits through specialized low-level hardware. Our 

ultimate goal was to implement the SIFT algorithm with 

VHDL, which can be downloaded to an FPGA. The 

benefits of programming the hardware of an FPGA is that 

the properties for different pixels or features can be 

computed in parallel physically as signals on different 

wires, and specialized hardware setups can be configured to 

quickly compute common mathematical operations in the 

SIFT algorithm that would otherwise require several 

instructions on a generalized processor to compute. 

 In order to transfer a dominantly software-implemented 

algorithm like SIFT into a low-level hardware 

implementation, we needed to break down the algorithm 

into a series of operations that could be performed in 

hardware. We first wrote our own software implementation 

of the SIFT algorithm at a basic level (e.g. no functions, 

just instructions that have an easily translated equivalent in 

hardware).  From there, we reorganized the code into a state 

machine format to emulate a sequential hardware 

implementation and facilitate translation into VHDL. Then, 
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Fig. 1.  Example of a case where SIFT feature recognition would be 
beneficial. An object of interest (stapler, left) is present in the right 

picture but smaller and rotated. 

 



 

 

 

we actually performed the translation into a VHDL module.  

 The remainder of the paper is organized as follows. In 

Section II we discuss the robot we used and the 

programmable interface for configuring the robot. In 

Section III, we discuss the SIFT algorithm and our 

approach to parallelizing the algorithm. In Section IV we 

discuss the results of the project. This includes the 

preliminary results of the intermediate low-level software 

SIFT implementation, as well as the results when 

downloading the VHDL hardware implementation onto the 

robot, including problems that arose and our solutions to 

those problems. Section V summarizes our results and 

draws from them conclusions about the project. It also 

offers suggestions for future work with regards to the 

algorithm and robot. 

II. ROBOT 

 The robot used in this project is the NI sbRIO-9631 

included in the NI LabVIEW Robotics Starter Kit for 

Education. This robot is pictured in Figure 2. It includes an 

ultrasonic sensor, two single-direction wheel motors (for 

the left and right wheels of the robot), four LEDs, and a 

Xilinx Spartan-3 FPGA, which is programmable through an 

Ethernet connection to a computer running LabVIEW 

Robotics software. 

  After creating our VHDL implementation of the SIFT 

algorithm, we program it onto the NI robot’s FPGA 

through the LabVIEW software. This software allows the 

insertion of VHDL modules to control the hardware design 

on the FPGA by use of “HDL Nodes” in a block-level 

design of the system. Our VHDL module can therefore 

compute whether or not each wheel of the robot should spin 

depending on where an object of interest is in an image fed 

to the robot. 

 The original goal of the project was to have the robot 

identify and move toward an object of interest, initially 

chosen to be a tennis ball. A series of training images 

would be supplied to the robot in order for it to learn the 

SIFT features that characterize the ball and then have the 

robot acquire test images via a connected camera and 

decide whether to move left, right, or forward in order to 

approach the ball after detecting it. However, conversations 

with NI technical support convinced us that it would not be 

possible to attach a camera in this manner. Similarly, it 

would not be possible to connect a wireless router to the 

robot’s Ethernet port and have image data from a camera 

streamed wirelessly to the robot. This approach in 

infeasible because the robot only uses its Ethernet 

connection to communicate with the computer running 

LabVIEW for the sake of downloading designs and 

exchanging debug information. 

 With no better option for acquiring real-time image data, 

we decided to directly program image data into a hardware 

ROM when downloading our design onto the robot and 

have the VHDL access this ROM instead of actual camera 

input. Both the training images and test images must be 

downloaded in this manner, and so our project became a 

proof-of-concept experiment for the application of a 

hardware-implemented SIFT algorithm to be extended by 

further research with a setup that allows real-time image 

analysis. 

 Since we do not have a camera, and the images we 

provide may not be of the actual environment the robot is 

in, the response of our robot has been modified. We do not 

want our robot to crash into things, so we have instead 

disallowed the robot to move forward. It can rotate left or 

right in circles, but instead of moving forward it merely 

signals with an LED that it theoretically would like to move 

forward if the image being shown to it were an actual input 

image from a camera. That is, from the test images, the 

robot either turns left if the target object is on the left of the 

image, turns right if the target object is on the right of the 

image, lights an LED if the target object is near the center 

of the image, and does nothing if the target object is not 

detected. 

III. OUR APPROACH 

A. Preliminary Low-Level Software 

 The SIFT algorithm is used to identify features in an 

image, regardless of scale and orientation. We began with a 

128x128 grayscale image. 

 There are four main stages to identifying SIFT features. 

In order, they are scale-space extrema detection, keypoint 

localization, orientation assignment, and keypoint 

descriptors [6]. 

 First, we discuss our scale-space extrema detection. 

Scale-space is a continuous function of scale, the only 

possible kernel of which is a Gaussian function. Therefore, 

we construct a Gauss pyramid (shown in Figure 3) by first 

creating five 2D symmetric Gaussian filters with increasing 

standard deviations σ1 through σ5. There are six versions of 

the original 128x128 image, called the six intervals, where 

each interval is the result of applying one of the Gaussian 

filters to the previous interval. Collectively, the six intervals 

 
 

Fig. 2.  The NI robot used in our project, including FPGA board, wheels, 

LEDs, and ultrasound sensor. 

 



 

 

 

form an octave. The first image of the second octave is the 

64x64 image that results from downsampling the fourth 

image of the previous octave by a factor of 2. This process 

of applying Gaussian filters and downsampling is repeated 

to create a Gauss pyramid consisting of four octaves with 

six intervals each. 

 Next, we subtract each interval’s image from the 

previous interval’s image to obtain a series of Difference of 

Gauss images.  There are 5 such images in each octave, and 

along with x and y spatial dimensions, the interval of the 

Difference of Gauss octave serves as a third dimension.  

Therefore, each octave in the Difference of Gauss pyramid 

can be thought of as a 3D image. For each octave, we 

compute the 3D local intensity extrema, where an 

extremum is defined as being a pixel with either greatest or 

least intensity among its eight neighbors in a 3x3x3 cube in 

the three dimensions of x, y, and interval. Each extremum 

is a feature candidate. 

 In the keypoint localization step, we narrow down the 

number of feature candidates. We apply upper and lower 

bounds on the contrasts of the extrema and perform 

gradient calculations to eliminate features that are too 

“edge-like” because they are vulnerable to noise effects, 

which differ depending on the scale of the image. After 

these candidates are eliminated, we are able to determine 

which of the candidates are actually SIFT features of 

interest. 

 During the orientation assignment step, the SIFT features 

are decorated with information about their surrounding 

environment. This information consists of a scale, which 

can be informally defined as the size of the feature (which 

is relative to the size of the object of interest and therefore 

is resistant to scale transformations), and an orientation, 

which can be informally defined as a 2D direction of the 

feature that will remain the same after rotation. The scale of 

a feature is determined from that feature’s octave and 

interval. The orientation of a feature is computed by 

examining the 2D spatial neighborhood of the feature 

within its interval and performing histogram analysis. 

Collectively, the location, scale, and 2D orientation define 

the feature. 

 The final stage of the SIFT algorithm, keypoint 

descriptors, is the decoration of features with extra 

information that makes the feature invariant to additional 

parameters beyond scale and rotation, such as illumination 

and 3D point of view. Our algorithm does not perform this 

fourth stage, as our intent to provide the robot with multiple 

training images compensates for this information and can 

therefore save computational effort on a per-image basis 

(although this is not so much an optimization for our image 

ROM-based system as it is for an actual real-time image-

acquiring system). 

 The SIFT algorithm described above was first 

implemented as a preliminary MATLAB script. We kept 

the code at a low level so that we could easily translate it to 

hardware. 

B. Reorganized State-Machine Implementation 

 In preparation for a VHDL hardware implementation of 

the SIFT algorithm, we reorganized our preliminary 

MATLAB code into a second MATLAB script organized 

into a large state-machine. In hardware, all synchronous 

(clock-driven) sequential logic can be thought of as a state 

machine. Registers hold their values and update only on 

clock ticks. The value that the registers are updated to may 

be a different function of other signals dependent on the 

current state of the state machine. By default, registers hold 

their own value from state to state, since there are only a 

select few times when each signal needs to change. States 

transitions also occur upon clock ticks. 

 To model this behavior in MATLAB, we can consider a 

register represented by variable R to have a next value 

 
 
Fig. 3.  Gauss Pyramid, in which each row is an octave consisting of six interval images. New intervals are computed by applying Gauss filters, and new 

octaves are computed by downsampling the fourth interval of the previous octave. 

 



 

 

 

represented by variable R_next. When in a state S, R_next 

is a function of S and all other register variables, but it 

defaults to R unless a change is required. After all _next 

variables have been calculated, a clock tick can be modeled 

by all registers R (including S) being updated to their 

respective newly calculated R_next values. The algorithm 

begins at a beginning state at which image data is received, 

and the cycle of state transitions is repeated until an end 

state is reached, at which point the SIFT features have been 

calculated. 

 The importance of this intermediate MATLAB script is 

then the division of computation into states. We partition to 

each state a computation that can be completed based on 

the available results of previous state computations, but not 

too much computation that the resulting hardware design 

would not be able to meet timing constraints. In a standard 

processor, no more than one arithmetic operation can be 

completed per clock cycle, but since we have designed this 

hardware specifically for our SIFT algorithm 

implementation, we have grouped in some states several 

commonly-used arithmetic operations that the SIFT 

algorithm would benefit from being able to compute 

quickly. 

C. VHDL Hardware Implementation 

 The final step to creating a hardware description that 

could be downloaded to the NI robot’s FPGA was 

translating from the state machine software simulation to an 

actual hardware module. This translation was greatly 

facilitated by the fact that we had broken the tasks down 

into ones that had intuitive hardware equivalents. 

 Additions in software were implemented as adders in 

hardware using the (+) VHDL operator. Subtractions are 

likewise simple to implement in hardware using subtracters 

(really, adders with negated input) via the (–) VHDL 

operator. Multiplications and divisions were similarly 

implemented as dedicated arithmetic blocks, although there 

is no equivalent operator in VHDL (prior to the new EDA 

VHDL-2008 standards, which were not supported by the 

LabVIEW HDL node environment). There are bit check 

equivalents for comparisons such as equality. Absolute 

values for contrast analysis in Difference-of-Gauss images 

were implemented by multiplexing the positive and 

negative values of the variable, conditional on the top bit 

(because negative numbers start with a 1, and non-negative 

numbers start with a 0). All fractional numbers required for 

Gauss filtering, gradient analysis, and, in general, precision 

for pixel representation, were implemented as 16-bit fixed 

point numbers with an 8-bit integer component and an 8-bit 

fractional component. Similar to the setup of the 

intermediate MATLAB script, registers are updated 

simultaneously during state transitions at each clock tick. 

For each register R, a temporary value R_next is calculated 

in combinational logic depending on the current state, and 

R is updated to R_next at the next clock tick. By default, 

R_next is R, unless the state machine is in some state that is 

specifically calculating or otherwise modifying register R. 

IV. RESULTS 

A. MATLAB Implementation Results 

 We have run our SIFT algorithm on a variety of images. 

We first tested with computer-generated images, two 

examples of which can be seen at the left of Figure 4. 

Feature locations are identified by blue circles, and the 

scale and orientation of each feature is identified by the red 

arrows (length shows scale, and direction shows 

orientation). We test the accuracy of our SIFT algorithm, 

we also downloaded a C implementation of the SIFT 

algorithm by Rob Hess [7] to verify our results. This 

implementation uses the OpenCV library. It is therefore 

more complicated than ours, in that it uses many function 

calls, imports many libraries and headers from OpenCV, 

and uses a large variety of different data structures.  These 

characteristics make this C implementation impossible to 

translate directly into VHDL. We ran this C 

implementation using the same images that we used with 

our MATLAB implementation for comparison.  The output 

of the C program can be seen at the right of Figure 4. 

 There is some difference in certain features from our 

results. Minor differences can be attributed to round-off in 

boundary cases or differences in implementations of certain 

components of the program (like how the Gaussian filter 

handles edge-of-image behavior). Overall, many of our 

features are the same. The largest differences can be 

attributed to simplifying approximations of certain 

functions such as tangents, exponentials, and square roots 

that are required to calculate the orientation of SIFT 

features. Because there is no simple hardware equivalent to 

these functions, we implemented them as polynomial 

approximations, which can be calculated as a series of 

multiplications and additions. Even though the match 

between features between our algorithm and Rob Hess’s 

algorithm is not perfect, we still label our MATLAB code 

as “working” because it calculated a set of SIFT-like 

features that can be used to identify an object in a test 

image. 

 We also compared our MATLAB SIFT implementation 

(functionally equivalent to the VHDL hardware 

implementation) to Rob Hess’s code for images taken from 

an actual camera, which we had intended to use as test 

images for locating a tennis ball. Two examples are shown 

in Figure 5. Our program tends to ignore smaller features 

resulting from noise more often than the C code does. 

B. VHDL implementation Results 

 After creating a fully synthesizable VHDL hardware 

description for the SIFT algorithm, we encountered several 

problems when trying to route it to a Spartan-3 FPGA, 

which we were required to fix by further modifying the 

VHDL. 

 An overall summary of our problems and solutions are 

shown in Table 1. This table also summarizes the tradeoff 

of each design decision. 

 Firstly, the FPGA size was limited to 17280 logic 

elements and 432kbit of RAM. With this amount of RAM, 



 

 

 

we were unable to fit images of size 128x128 pixels 

directly on the board (which would require 262kbit per 

image, and there are at least six 128x128 images for the 

first octave). We solved this problem by reworking our 

module to handle 32x32 images for the first octave, 16x16 

for the second octave, and so on down to the fourth octave. 

This reduction cut our total RAM usage by a factor of 16, 

which allowed all images in the Gauss pyramid to barely fit 

in RAM. However, only one image can fit in RAM at a 

time, so only one image can be analyzed at a time. If this 

image is a test image, then its features need to be recorded 

after the SIFT algorithm completes, and then the image 

must be flushed from memory. If it is a test image, then it 

must be the only test image being processed at a time, 

which prevents the analysis of several 32x32 images 

simultaneously to simulate a larger image. A second reason 

why dividing a larger image into 32x32 sub-blocks for 

serial analysis will not work is because the SIFT algorithm 

could only find features assuming the 32x32 image is the 

entire picture, which eliminates the possibility for features 

derived from larger objects in the image that span multiple 

32x32 sub-blocks. Essentially, this situation is the 

equivalent of having a camera that only captures 32x32 

pixel images. Unfortunately, the number of SIFT features 

that can be extracted from such an image size is often less 

than five, and so there is a great loss of precision compared 

to a 128x128 image. 

 Secondly, we encountered area and timing errors caused 

by combinational logic in our state machine. The greatest 

problems arose from our dividers. In hardware, division is a 

very complicated operation that generally lasts several 

clock cycles in a fast processor. In the SIFT algorithm, 

division is required when calculating gradients during the 

keypoint localization and orientation assignment stages. 

When trying to fit the design to a Spartan-3 FPGA using 

Xilinx ISE, the divider modules we used were too large and 

were unable to complete in the specified clock cycle. 

Because those divisions are required by the algorithm, the 

only option was to use different dividers. We switched to 

using the EDA VHDL-2008 support library’s fixed point 

package, which included a fixed point divider. 

 This change introduced a third problem. When trying to 

switch from ISE tools, which could predict synthesis and 

fitting results for the Spartan-3, to the LabVIEW software, 

which is required to actually program the FPGA on the NI 

robot, there were compatibility issues with the transition. 

Mainly, it is difficult in the LabVIEW software to use 

multi-file VHDL designs or external libraries. Although 

there is an option for VHDL modules with external 

dependencies, there are limitations when the external 

dependency is non-standard (e.g. not in the ieee library). 

Because the fixed point package was only added to the ieee 

library in 2008, the LabVIEW software did not support it 

by default. When trying to link to the external files 

containing the fixed point code, the software was unable to 

recognize the division routines. There was no solution for 

this problem to get the fixed point package dividers 

working. The only alternative would be to redesign the 

dividers to be pipelined and take multiple clock cycles, and 

that would introduce a larger RAM use in a system that is 

already memory-constrained. 

 Finally, there was the issue of the LabVIEW compiler 

not treating combinational logic the same way as the Xilinx 

ISE compiler. In hardware, combinational logic is expected 

to compute continuously. However, because of the 

interactions between the Spartan-3 FPGA and the rest of 

the sbRIO-9631 system on the NI robot, inputs to the 

FPGA are only toggled every so often at the frequency of 

the rest of the NI robot, and the outputs are only read 

periodically in the same manner. This changes the nature of 

 
 

Fig. 4.  SIFT features recognized by our MATLAB code (left) and Rob 
Hess’s C/OpenCV code (right) for computer-created images. 

 

 
 

Fig. 5.  SIFT features recognized by our MATLAB code (left) and Rob 
Hess’s C/OpenCV code (right) for actual photographs. 

 



 

 

 

combinational logic into something that is more sequential. 

The documentation with regard to this matter has stated that 

the best use for inserted HDL is for small modules that do 

not use internal registers, and that the behavior should 

differ depending on whether the HDL node is located 

schematically within a single-cycle loop in the larger design 

of the robot system. A hardware implementation of the 

SIFT algorithm clearly requires internal registers and 

multiple stages to implement a state machine. The solution 

to this issue is to redesign the VHDL to conform to the 

input and output requirements of the inserted HDL 

component, including specifically selecting to allow single-

cycle timed loops (which is not the default option) and then 

controlling internal registers with the LabVIEW-generated 

enable_in signal and controlling the enable_out signal to 

lag the enable_in signal until the computations in the state 

machine are complete. 

V. CONCLUSION 

 Our results have revealed that trying to implement a full-

hardware SIFT algorithm on the NI robot introduces several 

problems caused by the system’s memory, area, and timing 

limits. The board has only enough RAM to analyze one 

input image at a time, and this image must be sized at 

approximately 32x32 pixels, which drastically limits the 

resolution and number of extractable SIFT features. It is 

especially difficult to implement fixed-point division on the 

FPGA of the NI robot, and inputs and outputs of the FPGA 

must be carefully regulated to meet the timing of the 

external system. Our results lead us to conclude that a full-

hardware implementation of SIFT is not well-suited for the 

NI robot platform. 

 Previous implementations of the SIFT algorithm have 

used powerful serial processors to compute and match 

features on large images with dimensions of a few hundred 

pixels. If the algorithm should be parallelized, the 

parallelization should be at a coarser level than a complete 

VHDL implementation of the algorithm. Below we provide 

our suggestions for future research in this field, which 

includes several alternatives that would be better-suited for 

SIFT parallelization, and suggestions for better use of the 

NI robot platform. 

 Multiprocessors:  The SIFT algorithm has already been 

implemented in software on powerful serial processors. The 

algorithm could be parallelized by having several 

processing elements simply divide up the instructions that 

could be considered independent of one another. 

Programming for parallel implementation with pthreads, 

OpenMP, or OpenMPI could divide the Gauss filters and 

per-feature analysis equally amongst processors while 

keeping the level of abstraction the same as in previous 

implementations of SIFT. There would be a cost overhead 

from using several large processing elements. 

 Parallelized processors: These include Very Large 

Instruction Word (VLIW) processors, DSP processors, and 

GPUs. Each of these options is an SIMD architecture 

designed to perform the same operation on multiple pieces 

of data simultaneously. They are especially optimized for 

performing digital filters such as the ones required to build 

the Difference-of-Gauss pyramid in the scale-space extrema 

detection portion of the SIFT algorithm. Each processing 

element of any of these architectures is generally cheaper 

than a single processing element in a standard 

multiprocessor, but there is less support for compilers for 

these architectures. 

 Microcontrollers: A microcontroller is also capable of 

executing compiled C code, and like larger processors, it 

has the benefit of built-in memory. Accessing memory will 

not be as quick as on a full-hardware FPGA because of the 

serial nature of access, but several microcontrollers 

working in parallel could speed up the process. It would be 

relatively easy to hook up a camera to a multi-

microcontroller system compared to the NI robot. 

 FPGA with system-level programming: It would still be 

possible to take advantage of the FPGA’s full-hardware 

parallelization even with certain sequential segments of the 

SIFT algorithm. A memory controller would allow access 

to an FPGA board’s on-chip SDRAM so that images need 

not be stored in full hardware in the SRAM. An FPGA that 

has been programmed at a system level would bypass the 

issues of having to write relatively low-level modules like 

dividers. Se, Ng, Jasiobedzki, and Moyung [8] have used an 

FPGA programmed with System Generator to successfully 

speed up some of the vision processing functions in the 

SIFT algorithm for use on a planetary rover. The speedup 

was approximately 10x compared to a Pentium III 700MHz 

processor implementation, but the implementation was not 

full-hardware and still required a separate processor for 

TABLE I 

ISSUES AND SOLUTIONS RELATING TO VHDL IMPLEMENTATION 

Issue Solution Tradeoff 

128x128 image uses 

too much RAM 
Use 32x32 images 

Resolution, number 
of extractable 

features 

   
Custom divider 

module requires too 

much area/time 

Use EDA VHDL-

2008 fixed point 

library 

VHDL module 

depends on external 

package for division 
   

External package 

not recognized by 
LabVIEW 

Proposed: multi-

stage (pipelined) 
divider module 

RAM overheads, 

must redesign a new 
divider module 

   

LabVIEW HDL 
node executes 

combinational logic 

sequentially 

Place within 

single-cycle loop 

Must meet LabVIEW 

input/output protocol 
constraints 

   

General lack of 

available memory 
for image-intensive 

design 

Proposed: coarser 

parallelization, 
system-level 

hardware design 

Limits benefits of 
parallelization 

 

 



 

 

 

most computation aside from the vision functions. It is 

actually possible to program a small embedded processor 

onto an FPGA (for example, a Leon3 or Nios II processor) 

that could be modified to run the main program of the robot 

while exporting parallelizable operations such as the Gauss 

filters to the rest of the FPGA for fast hardware 

implementation. These processors are already configured to 

have memory handlers and dividers, so they are preferable 

to a full-hardware implementation. 

 Suggestions for future uses of the NI robot are as 

follows. The platform is most suited for use of the mounted 

ultrasound sensor. Based on the difficulties we had 

planning to attach an external camera to the robot, we 

conclude that it is not well-suited for algorithms that 

require image-based processing. Based on the difficulties 

interfacing between the on-board FPGA, the SDRAM, and 

the rest of the sbRIO-9631, we conclude that the FPGA 

should be limited to speeding up small operations that 

could execute within one or two clock cycles and could 

benefit from hardware parallelization. Using the FPGA for 

larger hardware designs with many internal registers is not 

recommended. Trying to access SDRAM and other external 

memory from within the NI robot’s FPGA is also not 

recommended. The primary programming method for the 

NI robot should be through LabVIEW software, and not 

through VHDL hardware modules. 

REFERENCES 

[1] D. G. Lowe, “Distinctive Image Features from Scale-Invariant 

Keypoints,” International Journal of Computer Vision, vol. 60, no. 2, 

pp. 91–110, November 2004. 
[2] S. Se, D. Lowe, and J. Little, “Vision-based Mobile Robot 

Localization And Mapping using Scale-Invariant Features,” The 
International Journal of Robotics Research, vol. 21, no. 8, pp. 735–

758, August 2002. 

[3] C. Valgren and A. Lilienthal, “SIFT, SURF and Seasons: Long-term 
Outdoor Localization Using Local Features,” in Proc. European 

Conference on Mobile Robots (ECMR), Freiburg, 2007, pp. 253–258. 

[4] D. G. Lowe. 
[5] R. Hess, “SIFT Feature Detector,” unpublished. Retrieved February 

15, 2010 from http://web.engr.oregonstate.edu/~hess/. 

[6] D. G. Lowe. 
[7] R. Hess. 

[8] S. Se, H.-K. Ng, P. Jasiobedzki, and T.-J. Moyung, “Vision Based 

Modeling and Localization for Planetary Exploration Rovers,” in 
55th International Astronautical Congress, Vancouver, 2004, pp. 1–

11. 


